Abstract

Phosphate was proposed to be a bridging ligand in the structure 1xjo.pdb of Streptomyces dizinc aminopeptidase (sAP), which prompted further studies of phosphate binding to this enzyme. Phosphate inhibits sAP and its Co(2+)-substituted derivatives in a noncompetitive manner from pH 6.0 to 9.0, with strongest inhibition observed at lower pHs (K(i) = 0.6, 8.2, and 9.1 mM for ZnZn-, CoCo-, and CoZn-sAP, respectively, at pH 6.0), which indicates that phosphate does not compete with substrate binding to the dinuclear active site and that monobasic phosphate has a higher binding affinity. The inhibition K(i)-pH profiles for phosphate inhibition of both the native and the Co(2+)-substituted derivatives reveal a similar pK(a) around 7.0, reflecting that phosphate binding is not affected by the metal centers of different Lewis acidities. Modification of ZnZn- and CoCo-sAP with the arginine-specific reagent phenylglyoxal reveals a significant weakening in phosphate and substrate binding by showing approximately a 10-fold increase in the dissociation constant K(i) for phosphate binding and approximately 4-8-fold increase in K(m). The catalysis is also influenced by the modification as reflected by a significant decrease in k(cat) in both cases. Furthermore, phosphate and the transition-state inhibitor 1-aminobutyl phosphonate can protect arginine from the modification, strongly suggesting that Arg202 near the active site is involved in phosphate binding and in stabilizing the transition state. The effect on (31)P NMR relaxation of phosphate caused by the paramagnetic metal center in Co(2+)-substituted derivatives of sAP has been measured, which reveals that only one phosphate is bound to sAP with the Co(2+)-(31)P distance in the range of 4.1-4.3 A. The (1)H NMR relaxation of the bulk water signal in the CoCo-sAP sample remains unchanged in the presence of phosphate, further indicating that phosphate may not bind to the active-site metals to displace any metal-bound water/hydroxide. These results strongly support that the phosphate binding site is Arg202 and that this residue plays an important role in the action of sAP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call