Abstract

Paralytic shellfish toxins (PSTs) are potent alkaloids of microalgal and cyanobacterial origin, with worldwide distribution. Over the last 20 years, the number of poisoning incidents has declined as a result of the implementation of legislation and monitoring programs based on bivalves. In the summer of 2012 and 2013, we collected a total of 98 samples from 23 different species belonging to benthic and subtidal organisms, such as echinoderms, crustaceans, bivalves, and gastropods. The sampling locations were Madeira, São Miguel Island (Azores archipelago), and the northwestern coast of Morocco. The samples were analyzed using post-column oxidation liquid chromatography with a fluorescence detection method. Our main goal was to detect new vectors for these biotoxins. After reporting a total of 59 positive results for PSTs with 14 new vectors identified, we verified that some of the amounts exceeded the limit value established in the EU. These results suggest that routine monitoring of saxitoxin and its analogs should be extended to more potential vectors other than bivalves, including other edible organisms, for a better protection of public health.

Highlights

  • Paralytic shellfish toxins (PSTs) are a type of phycotoxins which represent a serious threat to public health

  • Several edible and non-edible species were selected to search for potential new vectors and the prevalence of the screened biotoxins in the food web: gastropods (Stramonita haemastoma, Phorcus lineatus, Cerithium vulgatum, Gibbula umbilicalis, Aplysia depilans, Charonia lampas, Onchidella celtica, Patella gomesii, Patella aspera, Umbraculum umbraculum, Patella ordinaria), crustaceans (Pollicipes pollicipes), bivalves (Mytilus spp.), starfish (Ophidiaster ophidianus, Marthasterias glacialis, Echinaster sepositus), sea-cucumber (Holothuria (Platyperona) sanctori), sea-urchins (Paracentrotus lividus, Arbacia lixula, Sphaerechinus granularis, Diadema africanum), and fish (Sphoeroides marmuratus)

  • Since the post-column oxidation (PCOX) method is not validated for these different matrices, optimizations were needed and made for echinoderms and gastropods species, adding an additional step prior to the HPLC-FLD analyses and enhancing the reliability of the results [29]

Read more

Summary

Introduction

Paralytic shellfish toxins (PSTs) are a type of phycotoxins which represent a serious threat to public health. Episodes of poisoning in humans are caused by bivalve consumption and by other sorts of seafood. They are produced by several common genera of microalgae and cyanobacteria with worldwide distribution. They are a group of alkaloids including saxitoxin (STX) and its analogs. Marine dinoflagellates of the genera Alexandrium, Gymnodinium, and Pyrodinium are considered the main producers, being the majority of cases of paralytic shellfish poisoning (PSP) associated with blooming events of these species [4,5]. PSTs production has been found in freshwater and brackish cyanobacteria [6], these organisms are rarely reported as the original cause of human intoxications

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call