Abstract
We have recently shown that homogeneous and heterogeneous kinetics can be distinguished by experiments that compare the evolution of the population of a state over two time intervals [E. van Veldhoven et al., ChemPhysChem 8, 1761 (2007)]. This paper elaborates on the analogy between these multiple population-period transient spectroscopy (MUPPETS) experiments and more familiar spectroscopies based on the evolution of coherences. Using a modified inverse-Laplace transform, a standard kinetics decay is re-expressed as a "rate spectrum." A nonexponential decay creates a linewidth in this spectrum. Mechanisms for line broadening in rate spectra are compared to those for line broadening in frequency-domain spectra. Homogeneous and heterogeneous kinetics are defined precisely and are shown to be the counterparts of homogeneous and inhomogeneous line broadenings in frequency-domain spectra. Homogeneous line broadening mechanisms are further divided into equilibrium and nonequilibrium mechanisms, with equilibrium mechanisms more prevalent in frequency spectra and nonequilibrium mechanisms more prevalent in rate spectra. Spectral representations of two-dimensional MUPPETS experiments are developed that are equivalent to two-dimensional coherence spectroscopies. In particular, spectra equivalent to hole-burning and to correlation spectra are defined. Frequency-domain spectra are often modeled as an inhomogeneous distribution of identical homogeneous line shapes. A parallel homogeneous-heterogeneous model for kinetics is defined. Within this model, MUPPETS has sufficient information to completely separate the homogeneous and heterogeneous contributions to a nonexponential decay, even when the homogeneous contribution is nonexponential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.