Abstract
This is a review article exploring similarities between moduli of quiver representations and moduli of vector bundles over a smooth projective curve. After describing the basic properties of these moduli problems and constructions of their moduli spaces via geometric invariant theory and symplectic reduction, we introduce their hyperk\"ahler analogues: moduli spaces of representations of a doubled quiver satisfying certain relations imposed by a moment map and moduli spaces of Higgs bundles. Finally, we survey a surprising link between the counts of absolutely indecomposable objects over finite fields and the Betti cohomology of these (complex) hyperk\"ahler moduli spaces due to work of Crawley-Boevey and Van den Bergh and Hausel, Letellier and Rodriguez-Villegas in the quiver setting, and work of Schiffmann in the bundle setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.