Abstract

We design two parallel schemes, based on Schwarz Waveform Relaxation (SWR) procedures, for the numerical solution of the Kolmogorov equation. The latter is a simplified version of the Fokker–Planck equation describing the time evolution of the probability density of the velocity of a particle. SWR procedures decompose the spatio-temporal computational domain into subdomains and solve (in parallel) subproblems, that are coupled through suitable conditions at the interfaces to recover the solution of the global problem. We consider coupling conditions of both Dirichlet (Classical SWR) and Robin (Optimized SWR) types. We prove well-posedeness of the schemes subproblems and convergence for the proposed algorithms. We corroborate our findings with some numerical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.