Abstract

Various iterative methods for solving the linear systems associated with finite element approximations to self-adjoint elliptic differential operators are compared based on their performance on serial and parallel machines. The methods studied are all preconditioned conjugate gradient methods, differing only in the choice of preconditioner. The preconditioners considered arise from diagonal scaling, incomplete Cholesky decomposition, hierarchical basis functions and an additive Schwarz domain decomposition technique. The hierarchical basis function idea is shown to be especially effective for 2-D problems on both serial and parallel architectures. For 3-D problems, the additive Schwarz method appears promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.