Abstract

We consider parallel, or low adaptivity, algorithms for submodular function maximization. This line of work was recently initiated by Balkanski and Singer and has already led to several interesting results on the cardinality constraint and explicit packing constraints. An important open problem is the classical setting of matroid constraint, which has been instrumental for developments in submodular function maximization. In this paper we develop a general strategy to parallelize the well-studied greedy algorithm and use it to obtain a randomized (1 / 2 − є)-approximation in O( log2(n) / 2 ) rounds of adaptivity. We rely on this algorithm, and an elegant amplification approach due to Badanidiyuru and Vondrak to obtain a fractional solution that yields a near-optimal randomized ( 1 − 1/e − є )-approximation in O( log2(n) / є3 ) rounds of adaptivity. For non-negative functions we obtain a ( 3−2√2 − є )-approximation and a fractional solution that yields a ( 1 / e − є)-approximation. Our approach for parallelizing greedy yields approximations for intersections of matroids and matchoids, and the approximation ratios are comparable to those known for sequential greedy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.