Abstract
This paper proposes an efficient parallel algorithm for an important class of dynamic programming problems that includes Viterbi, Needleman-Wunsch, Smith-Waterman, and Longest Common Subsequence. In dynamic programming, the subproblems that do not depend on each other, and thus can be computed in parallel, form stages or wavefronts. The algorithm presented in this paper provides additional parallelism allowing multiple stages to be computed in parallel despite dependences among them. The correctness and the performance of the algorithm relies on rank convergence properties of matrix multiplication in the tropical semiring, formed with plus as the multiplicative operation and max as the additive operation. This paper demonstrates the efficiency of the parallel algorithm by showing significant speed ups on a variety of important dynamic programming problems. In particular, the parallel Viterbi decoder is up-to 24x faster (with 64 processors) than a highly optimized commercial baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.