Abstract
We present a method to parallelize the stochastic cutoff (SCO) method, which is a Monte-Carlo method for long-range interacting systems. After interactions are eliminated by the SCO method, we subdivide the lattice into non-interacting interpenetrating sublattices. This subdivision enables us to parallelize Monte-Carlo calculation in the SCO method. Such subdivision is found by numerically solving the vertex coloring of a graph created by the SCO method. We use an algorithm proposed by Kuhn and Wattenhofer to solve the vertex coloring by parallel computation. The present method was applied to a two-dimensional magnetic dipolar system on an $L\times L$ square lattice to examine its parallelization efficiency. The result showed that, in the case of L=2304, the speed of computation increased about 102 times by parallel computation with 288 processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.