Abstract

Two parallelized hybrid methods are presented for single-function optimization problems with side constraints. The optimization problems are difficult not only due to possible existence of local minima and nonsmoothness of functions, but also due to the fact that objective function and constraint values for a solution vector can only be obtained by querying a black box whose execution requires considerable computational effort. Examples are optimization problems in Engineering where objective function and constraint values are computed via complex simulation programs, and where local minima exist and smoothness of functions is not assured. The hybrid methods consist of the well-known method NOMAD and two new methods called DENCON and DENPAR that are based on the linesearch scheme CS-DFN. The hybrid methods compute for each query a set of solution vectors that are evaluated in parallel. The hybrid methods have been tested on a set of difficult optimization problems produced by a certain seeding scheme for multiobjective optimization. We compare computational results with solution by NOMAD, DENCON, and DENPAR as stand-alone methods. It turns out that among the stand-alone methods, NOMAD is significantly better than DENCON and DENPAR. However, the hybrid methods are definitely better than NOMAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.