Abstract

Shared-memory (SMP) parallelization strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein–Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.