Abstract
Stable distributions have a wide sphere of application: probability theory, physics, electronics, economics, sociology. Particularly important role they play in financial mathematics, since the classical models of financial market, which are based on the hypothesis of the normality, often become inadequate. However, the practical implementation of stable models is a nontrivial task, because the probability density functions of α‐stable distributions have no analytical representations (with a few exceptions). In this work we exploit the parallel computing technologies for acceleration of numerical solution of stable modelling problems. Specifically, we are solving the stable law parameters estimation problem by the maximum likelihood method. If we need to deal with a big number of long financial series, only the means of parallel technologies can allow us to get results in a adequate time. We have distinguished and defined several hierarchical levels of parallelism. We show that coarse‐grained Multi‐Sets parallelization is very efficient on computer clusters. Fine‐grained Maximum Likelihood level is very efficient on shared memory machines with Symmetric multiprocessing and Hyper‐threading technologies. Hybrid application, which is utilizing both of those levels, has shown superior performance compared to single level (MS) parallel application on cluster of Pentium 4 HT nodes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.