Abstract

In single-objective optimization it is possible to find a global optimum, while in the multi-objective case no optimal solution is clearly defined, but several that simultaneously optimize all the objectives. However, the majority of this kind of problems cannot be solved exactly as they have very large and highly complex search spaces. Recently, meta-heuristic approaches have become important tools for solving multi-objective problems encountered in industry as well as in the theoretical field. Most of these meta-heuristics use a population of solutions, and hence the runtime increases when the population size grows. An interesting way to overcome this problem is to apply parallel processing. This paper analyzes the performance of several parallel paradigms in the context of population-based multi-objective meta-heuristics. In particular, we evaluate four alternative parallelizations of the Pareto simulated annealing algorithm, in terms of quality of the solutions, and speedup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.