Abstract

Network motifs are widely used to uncover structural design principles of complex networks. Current sequential network motif discovery algorithms become inefficient as motif size grows, thus parallelization methods have been proposed in the literature. In this study, we use star contraction algorithm to partition complex networks efficiently for parallel discovery of network motifs. We propose two new heuristics to make star contraction more suitable for partitioning of complex networks. The effectiveness of our partitioning strategies is verified using the ESU algorithm for subgraph counting. We also propose a ghost vertices detection algorithm to ensure that all the motifs located in multiple parts are exactly found. We implement our method using MPI libraries and tested on real-life complex networks of different domains. We compared speedups of star contraction algorithm with speedups of other graph partitioning algorithms. Our algorithm obtained better speedups than those of other partitioning algorithms for most cases. Our algorithm provides significant speedups when compared to sequential ESU algorithm allowing discovery of larger network motifs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.