Abstract

This paper is focused on the verification and validation of the developing technique for estimation of the extent (the size and shape) of the fracture process zone (FPZ) in quasi-brittle silicate-based specimens/structures during failure process (termed the ReFraPro -Reconstruction of Fracture Process - technique). Most experimental data published in the literature are incomplete for its sound validation; therefore, numerical simulations by means of physical discretization of continuum are used for supplementing the verification of the technique. A discrete spring network/lattice particle-type model formulated as a nonlinear dynamical system is utilized. Parallelized implementation within the CUDA environment helps to decrease the computational cost of the simulations to an admissible level. The conducted analysis demonstrates satisfactory agreement of the size and shape of the FPZ reconstructed by the ReFraPro technique with both the data of the performed simulations and selected experimental data from literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call