Abstract
Discrete Stochastic Arithmetic (DSA) estimates round-off error propagation in a program. It is based on a synchronous execution of several instances of the program to control using a random rounding mode. In this paper we show how we can take advantage of multicore processors, which are nowadays widespread, to reduce the cost of DSA in terms of execution time. Several processes execute in parallel different instances of the program and exchange data when necessary. Several strategies are compared for the estimation of the result accuracy and the detection of numerical instabilities. With our parallel implementation, the cost of DSA is reduced by a factor of about 2 compared with the sequential approach. Our parallel implementation of DSA has been used successfully for the numerical validation of a real-life application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.