Abstract

Recently, cellular neural networks (CNNs) have been demonstrated to be a highly effective paradigm applicable in a wide range of areas. Typically, CNNs can be implemented using VLSI circuits, but this would unavoidably require additional hardware. On the other hand, we can also implement CNNs purely by software; this, however, would result in very low performance when given a large CNN problem size. Nowadays, conventional desktop computers are usually equipped with programmable graphics processing units (GPUs) that can support parallel data processing. This paper introduces a GPU-based CNN simulator. In detail, we carefully organize the CNN data as 4-channel textures, and efficiently implement the CNN computation as fragment programs running in parallel on a GPU. In this way, we can create a high performance but low-cost CNN simulator. Experimentally, we demonstrate that the resultant GPU-based CNN simulator can run 8–17 times faster than a CPU-based CNN simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.