Abstract

Face tracking is an important computer vision technology that has been widely adopted in many areas, from cell phone applications to industry robots. In this paper, we introduce a novel way to parallelize a face contour detecting application based on the color-entropy preprocessed Chan–Vese model utilizing a total variation G-norm. This particular application is a complicated and unsupervised computational method requiring a large amount of calculations. Several core parts therein are difficult to parallelize due to heavily correlated data processing among iterations and pixels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.