Abstract
This manuscript presents a notion of parallelizability of control systems. Parallelizability is a well-known concept of dynamical systems that associates with complete instability and dispersiveness. The concept of dispersiveness has been successfully interpreted in the setup of control systems. This naturally asks about the meaning of a parallelizable control system. The answer can be given in the setting of control affine systems by evoking their control flows. The main result shows that a parallelizable control flow characterizes a dispersive control affine system. The dispersiveness is then equivalent to the existence of a functional with infinite limit at infinity. The results of the paper contribute to the controllability studies, since dispersive control systems admit no control set. For invariant control systems with commutative vector fields, null trace representative matrices are a necessary condition for the existence of control set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.