Abstract

An account is given of experience gained in implementing computational chemistry application software, including quantum chemistry and macromolecular refinement codes, on distributed memory parallel processors. In quantum chemistry we consider the coarse-grained implementation of Gaussian integral and derivative integral evaluation, the direct-SCF computation of an uncorrelated wavefunction, the 4-index transformation of two-electron integrals and the direct-CI calculation of correlated wavefunctions. In the refinement of macromolecular conformations, we describe domain decomposition techniques used in implementing general purpose molecular mechanics, molecular dynamics and free energy perturbation calculations. Attention is focused on performance figures obtained on the Intel iPSC/2 and iPSC/860 hypercubes, which are compared with those obtained on a Cray Y-MP/464 and Convex C-220 minisupercomputer. From this data we deduce the cost effectiveness of parallel processors in the field of computational chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call