Abstract
Recently, a new class of scalable, shared-address-space multiprocessors has emerged. Like message-passing machines, these multiprocessors have a distributed interconnection network and physically distributed main memory. However, they provide hardware support for efficient implicit communication through a shared address space, and they automatically exploit temporal locality by caching both local and remote data in a processor's hardware cache. In this article, we show that these architectural characteristics make it much easier to obtain very good speedups on the best known visualization algorithms. Simple and natural parallelizations work very well, the sequential implementations do not have to be fundamentally restructured, and the high degree of temporal locality obviates the need for explicit data distribution and communication management. We demonstrate our claims through parallel versions of three state-of-the-art algorithms: a recent hierarchical radiosity algorithm by Hanrahan et al. (1991), a parallelized ray-casting volume renderer by Levoy (1992), and an optimized ray-tracer by Spach and Pulleyblank (1992). We also discuss a new shear-warp volume rendering algorithm that provides the first demonstration of interactive frame rates for a 256/spl times/256/spl times/256 voxel data set on a general-purpose multiprocessor. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.