Abstract

Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters is proposed. The first 45°-tilted cube beamsplitter splits object wave into two parallel copies: one copy is filtered by a pinhole in its Fourier plane to behave as reference wave, while the other one remains unchanged as object wave. The second cube beamsplitter combines the object and reference waves, and then split them together into two beams. Along with the two beams, two parallel phase-shifting interferograms are obtained in aid of polarization elements. Based on the proposed configuration, slightly-off-axis interferometry for microscopy is performed, which suppresses dc term by subtracting the two phase-shifting holograms from each other. The setup is highly stable due to its common-path configuration, and has been demonstrated to be suitable for measuring moving objects or dynamic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.