Abstract
Tucker decomposition is a low-rank tensor approximation that generalizes a truncated matrix singular value decomposition (SVD). Existing parallel software has shown that Tucker decomposition is particularly effective at compressing terabyte-sized multidimensional scientific simulation datasets, computing reduced representations that satisfy a specified approximation error. The general approach is to get a low-rank approximation of the input data by performing a sequence of matrix SVDs of tensor unfoldings, which tend to be short-fat matrices. In the existing approach, the SVD is performed by computing the eigendecomposition of the Gram matrix of the unfolding. This method sacrifices some numerical stability in exchange for lower computation costs and easier parallelization. We propose using a more numerically stable though more computationally expensive way to compute the SVD by preprocessing with a QR decomposition step and computing an SVD of only the small triangular factor. The more numerically stable approach allows us to achieve the same accuracy with half the working precision (for example, single rather than double precision). We demonstrate that our method scales as well as the existing approach, and the use of lower precision leads to an overall reduction in running time of up to a factor of 2 when using 10s to 1000s of processors. Using the same working precision, we are also able to compute Tucker decompositions with much smaller approximation error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.