Abstract
Tridiagonal matrix inversion is an important operation with many applications. It arises frequently in solving discretized one-dimensional elliptic partial differential equations, and forms the basis for many algorithms for block tridiagonal matrix inversion for discretized PDEs in higher-dimensions. In such systems, this operation is often the scaling bottleneck in parallel computation. In this paper, we derive a hybrid multigrid-Thomas algorithm designed to efficiently invert tridiagonal matrix equations in a highly-scalable fashion in the context of time evolving partial differential equation systems. We decompose the domain between processors, using multigrid to solve on a grid consisting of the boundary points of each processor’s local domain. We then reconstruct the solution on each processor using a direct solve with the Thomas algorithm. This algorithm has the same theoretical optimal scaling as cyclic reduction and recursive doubling. We use our algorithm to solve Poisson’s equation as part of the spatial discretization of a time-evolving PDE system. Our algorithm is faster than cyclic reduction per inversion and retains good scaling efficiency to twice as many cores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.