Abstract

PurposeThis work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply.Theory and MethodsPulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root‐mean squared B1+, B1rms, which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non‐selective sub‐pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8‐TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps.ResultsSimulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub‐pulses were enough for the implementation and coil used.ConclusionThe proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.