Abstract
In this paper, we study the left invariant spray geometry on a connected Lie group. Using the technique of invariant frames, we find the ordinary differential equations on the Lie algebra describing for a left invariant spray structure the linearly parallel translations along a geodesic and the nonlinearly parallel translations along a smooth curve. In these equations, the connection operator plays an important role. Using parallel translations, we provide alternative interpretations or proofs for some homogeneous curvature formulae. In particular, the Riemannian curvture appears in both a double Lie derivative along the spray vector and brackets between smooth vector fields induced by the connection operator. We propose two questions in left invariant spray geometry. One question generalizes Landsberg Problem in Finsler geometry, and the other concerns the restricted holonomy group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.