Abstract

Application of variable time-step and unstructured adaptive mesh refinement in parallel three-dimensional Direct Simulation Monte Carlo (DSMC) method is presented. A variable time-step method using the particle fluxes conservation (mass, momentum and energy) across the cell interface is implemented to reduce the number of simulated particles and the number of iterations of transient period towards steady state, without sacrificing the solution accuracy. In addition, a three-dimensional h-refined unstructured adaptive mesh with simple but effective mesh-quality control, obtained from a preliminary parallel DSMC simulation, is used to increase the accuracy of the DSMC solution. Completed code is then applied to compute several external and internal flows, and compared with previous results wherever available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call