Abstract

Efficient parallel synthesis of novel 7-oxa-steroids 4 has been achieved from the key intermediate 3 via a one-pot four-step sequence. oxa-Steroids 4 with various ortho-, meta-, and para-monosubstituents on the phenyl ring, as well as disubstituted phenyl and heterocycles, were evaluated for progesterone receptor (PR) and glucocorticoid receptor (GR) antagonist activities. SAR study demonstrated that the para-fluorinated substituents on the phenyl ring not only increased the potency for PR in a T47D cell functional assay, but also improved the selectivity over GR in an A549 cell functional assay. The para-fluorophenyl oxa-steroid 4l and the para-trifluoromethylphenyl oxa-steroid 4p were found to be remarkably more potent and more selective PR antagonists than mifepristone, with subnanomolar potency and about 140-fold selectivity over GR. Molecular modeling of the oxa-steroid bound to PR provided meaningful insight for the SAR study. oxa-Steroids 4a and 4b were found to be more efficacious than mifepristone in vivo in a rat uterine complement C3 assay via the oral route, although they were less than or equally potent to mifepristone in the T47D assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.