Abstract

An automated parallel four-column supercritical fluid chromatography (SFC)/MS system to perform high-throughput enantioselective chromatographic method development and optimization is described in this paper. The initial screening was performed in parallel on four chiral SFC columns over several buffer conditions. Optimization of the separation of enantiomers was achieved on a single chiral column. The screening and optimization were accomplished in a fully automated, user-independent manner. Incorporation of column control valves in front of each chiral column allowed the system to switch from parallel four-column screening mode to single-column optimization mode. To facilitate the process, a custom software program, we termed, intelligent parallel optimization for chiral SFC separation (IPOCSS), was developed in-house. The custom software monitored each of the runs in real-time, processed each data set, and by incorporating user-defined criteria (e.g., resolution of the two enantiomer chromatographic peaks), selected the next set of experiments and automatically optimized the enantioseparation. This new approach, combining parallel SFC/MS screening and intelligent software-controlled method optimization, has resulted in a streamlined, high-throughput tool for enantioselective method development, which has been applied successfully to enantioseparations in support of drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.