Abstract

The framework of this paper is the parallelization of a plasticity algorithm that uses an implicit method and an incremental approach. More precisely, we will focus on some specific parallel sparse linear algebra algorithms which are the most time-consuming steps to solve efficiently such an engineering application. First, we present a general algorithm which computes an efficient static scheduling of block computations for parallel sparse linear factorization. The associated solver, based on a supernodal fan-in approach, is fully driven by this scheduling. Second, we describe a scalable parallel assembly algorithm based on a distribution of elements induced by the previous distribution for the blocks of the sparse matrix. We give an overview of these algorithms and present performance results on an IBM SP2 for a collection of grid and irregular problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.