Abstract
Skyline query processing over uncertain data streams has attracted considerable attention recently, due to its importance in helping users make intelligent decisions on complex data. Nevertheless, existing studies only focus on retrieving the skylines over data streams in a centralised environment typically with one processor, which limits the scalability and cannot meet the requirement for massive data analysis. Cloud computing provides unprecedentedly opportunities for supporting massive data management, which can be well adapted to the parallel skyline queries. In this paper, we extensively study the parallel skyline query problem over uncertain data streams in cloud computing environments. Particularly, three parallel models SPM, APM, and DPM are proposed to address the problem based on the sliding window partitioning. Additionally, an adaptive sliding granularity adjustment strategy and a load balance strategy are proposed to further optimise the queries. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.