Abstract
This paper presents a novel parallel algorithm for power systems transient stability simulation based on fully implicit Runge–Kutta (IRK) method. The s-stage IRK method is used to convert the differential-algebraic system simultaneously at s different time points into a set of non-linear algebraic equations, and the algebraic system is then solved by Newton's method. By the use of the matrix factorization technique, the solution of the linear equations involved in Newton's process is divided into two parts: the first part is decoupled at s different time points, thus it is fully parallelizable in time, and the second part is solved by preconditioned generalized minimal residual method (GMRES) method, while a new preconditioning method has been proposed by using the W-transformation and double-parameters method. For test, the proposed algorithm is implemented on multiple-graphics processing units (GPUs) computing platform. The results show that the proposed algorithm is accurate and has good convergence. Moreover, the parallel algorithm implemented on multiple-GPUs computing platform achieves high parallel efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.