Abstract

In a system containing high-speed interconnects, the presence of a large number of coupled lines seriously limits the ability to perform fast simulations. In this paper, a parallel algorithm is presented that allows for simulations of massively coupled interconnects to be performed efficiently. New methods based on physical and time-domain partitioning are developed to create parallelism during transient simulations of large coupled interconnects. In addition, the proposed method exploits the recently developed waveform relaxation techniques to decouple and parallelize the large coupled simulation problem. In this approach, for a simulation of nL lines run on nP processors, the computational complexity is O(nLnP -1). This provides considerable savings as opposed to O(nL s ), 3 ? s ? 4 for full coupled-line simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.