Abstract
A parallel implementation of a Monte Carlo algorithm for modeling the scattering of electrons in solids and the resulting X-ray production is described. Two important issues for accurate and fast parallel simulation are discussed-random number generation and load-balancing. Timing results for the parallel simulation are given which show even modest-sized parallel machines can be competitive with conventional vector supercomputers for Monte Carlo trajectory simulations. Examples of parallel calculations performed to analyze specimen composition data and to characterize electron microscope performance are briefly highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.