Abstract

The simulation of particle dynamics is an essential method to analyze and predict the behavior of molecules in a given medium. This work presents the design and implementation of a parallel simulation of Brownian dynamics with hydrodynamic interactions for shared memory systems using two approaches: (1) OpenMP directives and (2) the Partitioned Global Address Space (PGAS) paradigm with the Unified Parallel C (UPC) language. The structure of the code is described, and different techniques for work distribution are analyzed in terms of efficiency, in order to select the most suitable strategy for each part of the simulation. Additionally, performance results have been collected from two representative NUMA systems, and they are studied and compared against the original sequential code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.