Abstract

We conduct simulations for the 3D unsteady state anisotropic diffusion process with DT-MRI data in the human brain by discretizing the governing diffusion equation on Cartesian grid and adopting a high performance differential–algebraic equation (DAE) solver, the parallel version of implicit differential–algebraic (IDA) solver, to tackle the resulting large scale system of DAEs. Parallel preconditioning techniques including sparse approximate inverse and banded-block-diagonal preconditioners are used with the GMRES method to accelerate the convergence rate of the iterative solution. We then investigate and compare the efficiency and effectiveness of the two parallel preconditioners. The experimental results of the diffusion simulations on a parallel supercomputer show that the sparse approximate inverse preconditioning strategy, which is robust and efficient with good scalability, gives a much better overall performance than the banded-block-diagonal preconditioner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.