Abstract

The simulated annealing optimization technique has been successfully applied to a number of electrical engineering problems, including transmission system expansion planning. The method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Moreover, it has the ability to provide solutions arbitrarily close to an optimum (i.e. it is asymptotically convergent) as the cooling process slows down. The drawback of the approach is the computational burden: finding optimal solutions may be extremely expensive in some cases. This paper presents a parallel simulated annealing (PSA) algorithm for solving the long-term transmission network expansion planning problem. A strategy that does not affect the basic convergence properties of the sequential simulated annealing algorithm have been implemented and tested. The paper investigates the conditions under which the parallel algorithm is most efficient. The parallel implementations have been tested on three example networks: a small 6-bus network; and two complex real-life networks. Excellent results are reported in the test section of the paper: in addition to reductions in computing times, the PSA algorithm proposed in the paper has shown significant improvements in solution quality for the largest of the test networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.