Abstract
Parallel reservoir simulation is an important approach to solving real-time reservoir management problems. Recently, there is a new trend of using a graphics processing unit (GPU) to parallelize the reservoir simulations. Current GPU-aided reservoir simulations focus on compute unified device architecture (CUDA). Nevertheless, CUDA is not functionally portable across devices and incurs high amount of code. Meanwhile, domain decomposition is not well used for GPU-based reservoir simulations. In order to address the problems, we propose a parallel method with OpenACC to accelerate serial code and reduce the time and effort during porting an application to GPU. Furthermore, the GPU-aided domain decomposition is developed to accelerate the efficiency of reservoir simulation. The experimental results indicate that (1) the proposed GPU-aided approach can outperform the CPU-based one up to about two times, meanwhile with the help of OpenACC, the workload of the transplant code was reduced significantly by about 22 percent of the source code, (2) the domain decomposition method can further improve the execution efficiency up to 1.7×. The proposed parallel reservoir simulation method is a efficient tool to accelerate reservoir simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Algorithms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.