Abstract
We use a recently discovered constrained de Finetti reduction (aka "Post-Selection Lemma") to study the parallel repetition of multi-player non-local games under no-signalling strategies. Since the technique allows us to reduce general strategies to independent plays, we obtain parallel repetition (corresponding to winning all rounds) in the same way as exponential concentration of the probability to win a fraction larger than the value of the game. Our proof technique leads us naturally to a relaxation of no-signalling (NS) strategies, which we dub sub-no-signalling (SNOS). While for two players the two concepts coincide, they differ for three or more players. Our results are most complete and satisfying for arbitrary number of sub-no-signalling players, where we get universal parallel repetition and concentration for any game, while the no-signalling case is obtained as a corollary, but only for games with "full support".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.