Abstract

The protease renin is the key enzyme in the renin-angiotensin system (RAS) that regulates extracellular volume and blood pressure. Renin is synthesized in renal juxtaglomerular cells (JG cells) as the inactive precursor prorenin. Activation of prorenin by cleavage of the prosegment occurs in renin storage vesicles that have lysosomal properties. To characterize the renin storage vesicles more precisely, the expression and functional relevance of the major lysosomal membrane proteins lysosomal-associated membrane protein 1 (LAMP-1), LAMP-2, and lysosomal integral membrane protein 2 (LIMP-2) were determined in JG cells. Immunostaining experiments revealed strong coexpression of renin with the LIMP-2 (SCARB2), while faint staining of LAMP-1 and LAMP-2 was detected in some JG cells only. Stimulation of the renin system (ACE inhibitor, renal hypoperfusion) resulted in the recruitment of renin-producing cells in the afferent arterioles and parallel upregulation of LIMP-2, but not LAMP-1 or LAMP-2. Despite the coregulation of renin and LIMP-2, LIMP-2-deficient mice had normal renal renin mRNA levels, renal renin and prorenin contents, and plasma renin and prorenin concentrations under control conditions and in response to stimulation with a low salt diet (with or without angiotensin-converting enzyme (ACE) inhibition). No differences in the size or number of renin vesicles were detected using electron microscopy. Acute stimulation of renin release by isoproterenol exerted similar responses in both genotypes in vivo and in isolated perfused kidneys. Renin and the major lysosomal protein LIMP-2 are colocalized and coregulated in renal JG cells, further corroborating the lysosomal nature of renin storage vesicles. LIMP-2 does not appear to play an obvious role in the regulation of renin synthesis or release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call