Abstract
Elongated implanted conductors can interact with the radiofrequency (RF) transmission field during MRI, posing safety concerns of excessive heating in patients with deep brain stimulators. A technique using parallel RF transmission (pTx) is evaluated on an anthropomorphic heterogeneous model with bilateral and unilateral curved wires. Amplitude and phase were optimized by simulation to minimize heating surrounding the implanted wires and to minimize B1+ inhomogeneity for four-channel and eight-channel pTx in a heterogeneous model. MRI experiments were conducted in an equivalent test phantom created from a common digital mesh file. In four-channel pTx, maximum local specific absorption rate (SAR) was reduced in both unilateral and bilateral wires by 47% and 59%, respectively, but with compromised B1+ homogeneity. Optimized eight-channel pTx substantially reduced local SAR compared with birdcage coil RF excitation in both unilateral and bilateral wires (reduction of maximum local SAR of 79% and 87%, respectively). B1+ inhomogeneity was limited to 17% and 26%, respectively. Experimental validation with four-channel pTx showed 80% and 92% temperature reduction at the tips of wire 1 and wire 2, respectively. This pTx approach yields promising reductions in local SAR at the tips of unilateral and bilateral implanted wires while maintaining image quality in simulation and experiment. Magn Reson Med 78:2408-2415, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.