Abstract

Mimicry has been a fundamental focus of research since the birth of evolutionary biology yet rarely has been studied from a phylogenetic perspective beyond the simple recognition that mimics are not similar due to common descent. The difficulty of finding characters to discern relationships among closely related and convergent taxa has challenged systematists for more than a century. The phenotypic diversity of wing pattens among mimetic Heliconius adds an additional twist to the problem, because single species contain more than a dozen radically different-looking geographical races even though the mimetic advantage is theoretically highest when all individuals within and between species appear the same. Mitochondrial DNA (mtDNA) offers an independent way to address these issues. In this study, Cytochrome Oxidase I and II sequences from multiple, parallel races of Heliconius erato and Heliconius melpomene are examined, to estimate intraspecific phylogeny and gauge sequence divergence and ages of clades among races within each species. Although phenotypes of sympatric races exhibit remarkable concordance between the two species, the mitochondrial cladograms show that the species have not shared a common evolutionary history. H. erato exhibits a basal split between trans- and cis-Andean groups of races, whereas H. melpomene originates in the Guiana Shield. Diverse races in either species appear to have evolved within the last 200,000 yr, and convergent phenotypes have evolved independently within as well as between species. These results contradict prior theories of the evolution of mimicry based on analysis of wing-pattern genetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call