Abstract

Heterogeneous many-cores are now an integral part of modern computing systems ranging from embedding systems to supercomputers. While heterogeneous many-core design offers the potential for energy-efficient high-performance, such potential can only be unlocked if the application programs are suitably parallel and can be made to match the underlying heterogeneous platform. In this article, we provide a comprehensive survey for parallel programming models for heterogeneous many-core architectures and review the compiling techniques of improving programmability and portability. We examine various software optimization techniques for minimizing the communicating overhead between heterogeneous computing devices. We provide a road map for a wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This article provides both an accessible introduction to the fast-moving area of heterogeneous programming and a detailed bibliography of its main achievements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.