Abstract

The Building-Cube Method (BCM) based on equally-spaced Cartesian meshes has been proposed as a next generation CFD method. Due to the equally-spaced meshes, it is well suited for highly parallel computation. This paper proposes a parallel implementation scheme of BCM on a GPU cluster system, which needs efficient hierarchical parallel processing to exploit the potential of the cluster system. The proposed scheme employs the Red-Black SOR method for the pressure calculations, which is the most time-consuming part of BCM, to obtain massive data parallelism of BCM. By exploiting the coarse-grain and fine-grain parallelism of BCM, the proposed scheme hierarchically assigns equally-divided tasks into the GPU cluster system. Furthermore, to exploit the computational power of GPUs in the cluster system, the proposed scheme employs an efficient data management such as coalesced data transfer and reusing data on an on-chip memory. Experimental results show that the single GPU implementation can achieve about three times higher performance than the single CPU one. Moreover, the multiple GPU implementation can achieve an almost ideal scalability. Finally, the possibility of further acceleration of not only the pressure calculation but also the whole BCM is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.