Abstract

Photonic accelerators have attracted increasing attention for use in artificial intelligence applications. The multi-armed bandit problem is a fundamental problem of decision making using reinforcement learning. However, to the best of our knowledge, the scalability of photonic decision making has not yet been demonstrated in experiments because of the technical difficulties in the physical realization. We propose a parallel photonic decision-making system to solve large-scale multi-armed bandit problems using optical spatiotemporal chaos. We solved a 512-armed bandit problem online, which is larger than those in previous experiments by two orders of magnitude. The scaling property for correct decision making is examined as a function of the number of slot machines, evaluated as an exponent of 0.86. This exponent is smaller than that in previous studies, indicating the superiority of the proposed parallel principle. This experimental demonstration facilitates photonic decision making to solve large-scale multi-armed bandit problems for future photonic accelerators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.