Abstract
Parallel perception of visual motion is of crucial significance to the development of an intelligent machine vision system. However, implementing in-sensor parallel visual motion perception using conventional complementary metal-oxide semiconductor technology is challenging, because the temporal and spatial information embedded in motion cannot be simultaneously encoded and perceived at the sensory level. Here, we demonstrate the parallel perception of diverse motion modes at the sensor level by exploiting light-tunable memory matrix in a van der Waals (vdW) heterostructure array. The optoelectronic characteristics of gate-tunable photoconductivity and light-tunable memory matrix enable devices in the array to realize simultaneous encoding and processing of incoming spatiotemporal light pattern. Furthermore, we implement a visual motion perceptron with the array capable of deciphering multiple motion parameters in parallel, including direction, velocity, acceleration, and angular velocity. Our work opens up a promising venue for the realization of an intelligent machine vision system based on in-sensor motion perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.