Abstract

We develop a parallel optically detected magnetic resonance (PODMR) spectrometer to address, manipulate, and read out an array of single nitrogen-vacancy (NV) centers in diamond in parallel. In this spectrometer, we use an array of micro-lenses to generate a 20 × 20 laser-spot lattice (LSL) on the objective focal plane and then align the LSL with an array of single NV centers. The quantum states of NV centers are manipulated by a uniform microwave field from a Ω-shape coplanar coil. As an experimental demonstration, we observe 80 NV centers in the field of view. Among them, magnetic resonance (MR) spectra and Rabi oscillations of 18 NV centers along the external magnetic field are measured in parallel. These results can be directly used to realize parallel quantum sensing and multiple times speedup compared with the confocal technique. Regarding the nanoscale MR technique, PODMR will be crucial for a high throughput single molecular MR spectrum and imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.