Abstract

The assembly and characterization of dual-electrode amperometric detection for capillary electrophoresis are described. The detector consists of a disk electrode and an integrated on-capillary electrode fabricated by depositing a gold film onto the end of the separation capillary. The two electrodes are brought together, aligned, and fixed in position using a pair of acrylic plates with a straight groove on one of the plates, the same design as that of a conventional end-column detector. A portion of the on-capillary electrode is parallel-opposed to the disk electrode in a thin-layer geometry. In this region, the redox cycling established between these two electrodes significantly enhances the amperometric signals of electrochemically reversible analytes. For measurements of dopamine in pH 6.9 phosphate electrolyte with a 12.5-μm-i.d. capillary, such a configuration is 10-fold more sensitive than conventional end-column detection. The linear range exceeds 4 orders of magnitude (1.2 mM-50 nM) and the detection limit is 12 nM (4.2 amol, S/N = 3). Various modes of potential settings for the dual-electrode detection are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.