Abstract

Extreme learning machine (ELM) is a competitive machine learning approach for training single hidden layer feedforward neural networks with fast learning speed and good generalization performance. However, ELM also suffers from the imbalanced classification problem, which exists in many fields and degrades the performance of classifier significantly. In order to address this issue, in this paper, we propose a novel parallel one-class ELM based on Bayesian approach for imbalanced classification problem, named P-ELM. In P-ELM, the training dataset is firstly divided into k (k is the number of classes) components according to the class attribution of the samples, and then the divided training datasets will be fed into the corresponding k Kernel-based one-class ELM classifiers. Estimation of the probability density based on the output function of Kernel-based one-class ELM classifier is constructed. Thus, the class attribution of the samples can be judged directly by comparing the values of the output function of each Kernel-based one-class ELM classifier of P-ELM based on the Bayesian approach. The detailed performance comparison and discussions of P-ELM are performed with several related class imbalance learning approaches on some selected benchmark datasets including both the binary classification and the multiclass classification problems, as well as a real world application, i.e., the blast furnace status diagnosis problem. The experimental results show that the proposed P-ELM can achieve better performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call