Abstract

The challenging task of analyzing on-chip power (ground) distribution networks with multimillion node complexity and beyond is key to today's large chip designs. For the first time, we show how to exploit recent massively parallel single-instruction multiple-thread (SIMT)-based graphics processing unit (GPU) platforms to tackle large-scale power grid analysis with promising performance. Several key enablers including GPU-speciflc algorithm design, circuit topology transformation, workload partitioning, performance tuning are embodied in our GPU-accelerated hybrid multigrid (HMD) algorithm (GpuHMD) and its implementation. We also demonstrate that using the HMD solver as a preconditioner, the conjugate gradient solver can converge much faster to the true solution with good robustness. Extensive experiments on industrial and synthetic benchmarks have shown that for DC power grid analysis using one GPU, the proposed simulation engine achieves up to 100× runtime speedup over a state-of-the-art direct solver and more than 50× speedup over the CPU based multigrid implementation, while utilizing a four-core-four-GPU system, a grid with eight million nodes can be solved within about 1 s. It is observed that the proposed approach scales favorably with the circuit complexity, at a rate about 1 s per two million nodes on a single GPU card.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.